
Attention Mechanisms

Jonah Ramponi

March 2024

Contents

1 Background and Notation 2

2 Introduction To Self Attention 4
2.1 Scaled Dot Product Self Attention . 4
2.2 Multi Head Self Attention . 6

3 Memory Bandwidth Reduction via Key and Value 7
3.1 Multi Query Attention . 7
3.2 Grouped Query Attention . 7
3.3 Conversions from Multi Head Attention . 7

4 Adaptations to the Attention Matrix 8
4.1 Sliding Window Attention . 8
4.2 Sparse Attention . 10

5 Inference 12
5.1 The KV Cache . 12
5.2 Flash Attention . 13

1

1 Background and Notation

Suppose you give an LLM the input

input: “What is the capital of France?”

The first thing the LLM will do is split this input into tokens. A token is just some combi-
nations of characters. You can see an example of the tokenization outputs for the question
below.

“ What is the capital of France ? ”1

In this example we have (n = 7) tokens. Importantly, from our model’s point of view, our
input size is defined by the number of tokens instead of words. A numerical representation
(vector representation) of each token is now found. Finding this vector representation is

called producing an embedding of the token. The token “ What ” might get tokenized as
follows

tokenizer(What) →

−0.4159
−0.5147
0.5690

...
−0.2577
0.5710

(1)

The length of each of our embeddings, these vector outputs of our tokenizer, are the
same regardless of the number of characters in our token. Let us denote this length dmodel.
So after we embed each token in our input sequence with our tokenizer we are left with

Output after tokenization:

−0.415
−0.514
0.569
...

−0.257
0.571

−0.130
−0.464
0.23
...

−0.154
0.192

, . . . ,

0.127
0.453
0.110
...

−0.155
0.484

This output is now passed through a positional encoder. Broadly, this is useful to provide

the model with information about the position of words or tokens within a sequence. You
might wonder why we need to positionally encode each token. What does it even mean
to positionally encode something? Why can’t we just use the index of the item? These
questions are for another document.

The only thing that matters for now, is that each of our numerical representations
(vectors) are slightly altered. For the numerical representation of the token “ What ” that
we get from our embedding model, it might look something like:

positional encoder

(
−0.415
−0.514

...
−0.257
0.571

)

=

−0.424
−0.574

...
−0.235
0.534

 (2)

Importantly, the positional encoder does not alter the length of our vector, dmodel. It
simply tweaks the values slightly. So far, our transformations look like:

1This tokenization was produced using cl100k base, the tokenizer used in GPT-3.5-turbo and GPT-4.

2

input: “What is the capital of Paris?”

(1) tokenize: “ What is the capital of France ? ”

(2) embed:

−0.415
−0.514
0.569
...

−0.257
0.571

−0.130
−0.464
0.23
...

−0.154
0.192

, . . . ,

0.127
0.453
0.110
...

−0.155
0.484

(3) encode:

−0.424
−0.574
0.513
...

−0.235
0.534

−0.133
−0.461
0.228
...

−0.151
0.193

, . . . ,

0.123
0.455
0.110
...

−0.121
0.489

We’re now very close to being able to introduce attention. One last thing remains, at

this point we will transform the output of our positional encoding to a matrix M as follows

M =

−0.424 −0.574 0.513 . . . −0.235 0.534
−0.133 0.461 0.228 . . . −0.151 0.193

...
...

...
. . .

...
...

0.123 0.455 0.110 . . . −0.121 0.489

 = positional encoding

What

is
...

?

(3)

The top row is the first vector output of our positional encoding. The second row is the
second, and so on. If we had n tokens in our input sequence, then matrix M would have n
rows. The dimensions of M are as follows

M =
(
number of tokens in input× length of embedding

)
=
(
n× dmodel

)
. (4)

3

2 Introduction To Self Attention

At a high level, self-attention aims to evaluate the importance of each element in a sequence
with respect to all other elements and use this to compute a representation of the sequence.
All it really does is compute a weighted average of input vectors to produce output vec-
tors. Mathematically, for an input sequence of vectors x = (x⃗1, . . . , x⃗n) it will return some
sequence of vectors, y = (y⃗1, . . . , y⃗m) such that

yi =

n∑
j=1

wij · xj , ∀1 ≤ i ≤ m. (5)

for some mapping wij . The challenge is in figuring out how we should define our mapping
wij . Let’s look at the first way wij was defined, introduced in Attention is All You Need [7].

2.1 Scaled Dot Product Self Attention

To compute scaled dot product self attention, we will use the matrix M with rows corre-
sponding to the positionally encoded vectors. M has dimensions (n× dmodel).

We begin by producing query, key and value matrices, analogous to how a search engine
maps a user query to relevant items in its database2. We will make 3 copies of our matrix
M . These become the matrices Q,K and V . Each of these has dimension (n× dmodel). We
let dk denote the dimensions of the keys, which in this case is dmodel. We are ready to define
attention as

attention(Q,K, V) = softmax
(QKT

√
dk

)
· V. (6)

1 def attention(Q, K, V):

2 dk = K.size(-1)

3 scores = torch.matmul(Q, K.transpose(-2, -1)) / torch.sqrt(dk)

4 attn_weights = torch.nn.functional.softmax(scores, dim=-1)

5 return torch.matmul(attn_weights, V)

Our matrix QKT of dimension (n× dmodel)× (n× dmodel)
T = (n× n). After we re-scale

by
√
dk, this matrix is referred to as the attention matrix.

Why do we divide by
√
dk? This was introduced to counteract the effect of having

the dot products grow large in magnitude for large dimensional inputs dk >> 1. In cases
where the dot product grew large in size, it was suspect suspected that application of the
softmax function was returning extremely small gradients which in turn lead to the vanish-
ing gradients problem.

We multiply the softmax of the attention matrix with each row of V . This re-scales each
row of the output matrix to sum to one. The equation for softmax applied to a matrix X is
as follows3

softmax(X)ij =
eXij∑n
k=1 e

Xik
. (7)

1 def softmax(X):

2 exp_X = torch.exp(X)

3 denom = exp_X.sum(dim=-1, keepdim=True)

4 return exp_X / denom

2This stack exchange post contains some great insight into the idea behind the Q, K and V matrices.
3A version of softmax with better stability is discussed in Section (5.2).

4

https://stats.stackexchange.com/questions/421935/what-exactly-are-keys-queries-and-values-in-attention-mechanisms

Why use softmax? The dot product of Q and KT gives us a value anywhere between
negative and positive infinity. Application of softmax ensures our outputs are more stable.
Otherwise, large elements in Q or KT would grow even larger, dominating the attention
mechanism which may cause convergence issues.

Earlier on in Equation (5) we described attention as

yi =

n∑
j=1

wij · xj , ∀1 ≤ i ≤ m. (8)

Well, our attention matrix after softmax has been applied is simply w with (i, j)th element
wij . The output yi is just the weighted sum using w on the value vectors, v = (v⃗1, . . . , v⃗n).
It may be clearer to visualize the output as

y⃗ =

w11 w12 . . . w1n

w21 w22 . . . w2n

...
...

. . .
...

wn1 wn2 . . . wnn

×

v1
v2
...
vn

The attention matrix is a nice thing to visualize. For our toy example, it might look like

w =

What is the capital of France ?

What 0.71 0.12 0.32 0.29 0.23 0.03 0.49

is 0.12 0.65 0.04 0.37 0.27 0.15 0.13

the 0.32 0.04 0.68 0.21 0.11 0.36 0.22

capital 0.29 0.37 0.21 0.59 0.12 0.39 0.41

of 0.23 0.27 0.11 0.12 0.67 0.20 0.15

France 0.03 0.15 0.36 0.39 0.20 0.81 0.12

? 0.49 0.13 0.22 0.41 0.15 0.12 0.70

(9)

What can we notice about our attention matrix?

• It is symmetric. That is, w = wT . This is to be expected, as remember it was produced
by computing QKT where Q and K are identical.

• The largest values are often times found on the leading diagonal. You can think of
the values in the matrix as some measure of how important one token is to another.
Typically, we try to ensure that each token pays attention to itself to some extent.

• Every cell is filled. This is because in this attention approach, every token attends to
every other token. This is often referred to as full n2 attention. In Section (4) you will
see other ways of defining this attention matrix.

5

2.2 Multi Head Self Attention

It’s important to acknowledge that there may not exist a single perfect representation of
the attention matrix. Multi Head Self Attention allows us to produce many different repre-
sentations of the attention matrix. Each individual attention mechanism is referred to as a
“head”. Each head learns slightly different representations of the input sequence, which the
original researchers found prompted the best output [7].

Firstly, we’re going to introduce some new matrices. These will be defined as

Q = (n× dq), K = (n× dk), V = (n× dv)

These matrices will be obtained by linearly transforming the original matrix M , using
weight matrices WQ, WK and WV respectively:

Q = M ×WQ,

K = M ×WK ,

V = M ×WV .

Each of these matrices has dmodel rows, and remember that M has dmodel columns. We
have control over parameters dq, dk, dv. In the original research they took dq = dk = dv =
dmodel/8 = 64[7].

We’re going to use a different set of weight matrices WQ, WK and WV for each
head. If we have H heads, we will refer to the set of weight matrices of the hth head
as {WQ

h ,WK
h ,WV

h }. For a given head, h, the output of the attention mechanism is

hi = attention(M ·WQ
h ,M ·WK

h ,M ·WV
h) (10)

In Section (3) you will see how we can make the computation of Multi Head Attention more
efficient. The overall output of the process is then simply

MultiHead(Q,K, V) = Concat(head1, . . . ,headH)WO. (11)

Concat() simply concatenates our output matrices. The output matrix of size (n × dv) for
each head is simply our matrices stacked on top of one another like so

Concat(head1, . . . ,headh) =

head111 . . . head11dv . . . headH11

. . . headH1dv

head121 . . . head12dv . . . headH21 . . . headH2dv

...
. . .

... . . .
...

. . .
...

head1n1
. . . head1ndv

. . . headHn1
. . . headHndv

This output has dimension (n×Hdv). We still have n rows, however now we have h different
representations of dv. Our output, WO, is another trainable weight matrix which has di-
mensions WO = (Hdv ×dmodel). Therefore, the multiplication of Concat(head1, . . . ,headH)
and WO results in a matrix with dimension (n× dmodel).

6

3 Memory Bandwidth Reduction via Key and Value

3.1 Multi Query Attention

Multi Query Attention (MQA) [6] using the same K and V matrices for each head in our
multi head self attention mechanism. For a given head, h, 1 ≤ h ≤ H, the attention
mechanism is calculated as

hi = attention(M ·WQ
h ,M ·WK ,M ·WV). (12)

For each of our H heads, the only difference in the weight matrices is in WQ
h . Each of these

Wh has dimension (n× dq). The attention output for each head i is given by

attention(Qh,K, V) = softmax
(Qh ·KT

√
dk

)
· V (13)

As before, we simply concatenate our attention outputs and multiply by WO, which is
defined as before.

3.2 Grouped Query Attention

Grouped Query Attention (GQA) [1] is very similar to MQA. The difference is that instead
of using just one set of K, V values for attention calculations it uses G different sets of K,V
values. If we have H heads, GQA is equivalent to MHA if G = H and equivalent to MQA
if G = 1. Suppose we want to use G groups. We would

1. Allocate each of our H heads into one of the G groups. It would likely make sense to
pick G such that G mod H ≡ 0. Though this is not a requirement.

2. For each head in a given group, we calculate attention outputs as

attention(h) = attention(M ·WQ
h ,M ·WK

g ,M ·WV
g) (14)

= softmax
(Qh ·KT

g√
dk

)
· Vg (15)

The query matrices will be shared by all groups under a given head, and the key and value
matrices will be used for all attention calculations within a given group.

3.3 Conversions from Multi Head Attention

A natural question might be how one could take a model which uses multi-head attention
and convert it to model using multi query attention or grouped query attention. To convert
to multi query attention, we want to find a single representative matrix for both K and V
from our set of H different heads. We achieve this via mean pooling. For instance for K,

mean pooling(K1, . . . ,Kh) → K ′. (16)

We need to decide the size of our mean pooling window, w. Our process then involves

1. Divide each of the input matrices (K1, . . . ,KH) into non-overlapping w × w regions,

2. Compute the average value within each w×w region for each input matrix (K1, . . . ,KH),

3. Compute the mean of the corresponding regions across all H input matrices and set
this to the corresponding values in our final matrix K ′.

We now have our matrix K ′. It is required at this stage to pre-train for a small portion
of the original training steps. The process is nearly identical for grouped query attention.
However this time we mean pool over each group of matrices (instead of the whole set). The
matrices within a given group are simply dictated by how we chose to assign our G groups
to the original H heads.

7

4 Adaptations to the Attention Matrix

4.1 Sliding Window Attention

Sliding Window Attention [2] reduces the number of calculations we are doing when comput-
ing self attention. Previously, to compute attention we took our input matrix of positional
encodings M , and made copies named Q,K and V . We used these copies to compute

attention(Q,K, V) = softmax
(QKT

√
dk

)
V. (17)

For now, let’s ignore the re-scaling by
√
dk and just look at the computation of QKT .

This computation looks like

Q×KT =

Q11 Q12 · · · Q1d

Q21 Q22 · · · Q2d

...
...

. . .
...

Qn1 Qn2 · · · Qnd

×

K11 K21 · · · Kn1

K12 K22 · · · Kn2

...
...

. . .
...

K1d K2d · · · Knd

 (18)

Our goal is to simplify this computation. Instead of letting each token attend to all of
the other tokens, we will define a window size w. The token we are calculating attention
values for will then only get to look at the tokens 1

2w either side of it. For our example, we
could consider a sliding window of size 2 which will look 1 token to either side of the current
token. Only the values shaded in olive will be calculated.

w =

What is the capital of France ?

What 0.71 0.12 0.32 0.29 0.23 0.03 0.49

is 0.12 0.65 0.04 0.37 0.27 0.15 0.13

the 0.32 0.04 0.68 0.21 0.11 0.36 0.22

capital 0.29 0.37 0.21 0.59 0.12 0.39 0.41

of 0.23 0.27 0.11 0.12 0.67 0.20 0.15

France 0.03 0.15 0.36 0.39 0.20 0.81 0.12

? 0.49 0.13 0.22 0.41 0.15 0.12 0.70

(19)

This greatly reduces the cost of the computation of Q × KT , as our computation will
now look like

Q×KT =

Q11 Q12

Q21 Q22 · · ·
...

. . .
...

· · · Qnd

×

K11 K21

K12 K22 · · ·
...

. . .
...

· · · Knd

 (20)

However, the original authors encountered a problem in training. The authors found
that this approach is not flexible enough to learn to complete specific tasks. They solved
this problem through the introduction of global attention. This will give a few of our tokens
some special properties:

• A token with a global attention attends to all other tokens in the sequence

• All tokens in the sequence attend to every token with a global attention.

The local attention (sliding window attention) is primarily used to build contextual repre-
sentations, while the global attention allows the model to build full sequence representations
for prediction [2].

8

We will require two sets of our projection matrices. Firstly, projections to compute at-
tention scores for our sliding window approach {Qs,Ks, Vs} and secondly attention scores
for the global attention {Qg,Kg, Vg}. These are initialized to the same values.

We first calculate local attention weights using {Qs,Ks, Vs}. This gives us an attention
output, which is then combined with the output using the global attention weights. The
global weights are written on top of the output attention weight matrix calculated by the
local attention calculation.

Dilated Sliding Window Attention is another approach to achieve a similar result.
This time, instead of simply taking the 1

2w tokens either side of a given w we will introduce
some gaps of size d. This is referred to as the dilation. Using w = 2, d = 1 in our example
we would have an attention matrix which looks like

w =

What is the capital of France ?

What 0.71 0.12 0.32 0.29 0.23 0.03 0.49

is 0.12 0.65 0.04 0.37 0.27 0.15 0.13

the 0.32 0.04 0.68 0.21 0.11 0.36 0.22

capital 0.29 0.37 0.21 0.59 0.12 0.39 0.41

of 0.23 0.27 0.11 0.12 0.67 0.20 0.15

France 0.03 0.15 0.36 0.39 0.20 0.81 0.12

? 0.49 0.13 0.22 0.41 0.15 0.12 0.70

(21)

The authors provide a nice visual of how this looks generally, which you can see in Figure
(1). The authors note they use dilated sliding window attention with small window sizes for
lower layers, and larger window sizes for higher layers. They do not introduce dilation for
lower layers, however for higher layers a small amount of increasing dilation was introduced
on 2 heads.

Figure 1: Attention Mechanisms, taken from [2].

9

4.2 Sparse Attention

Sparse Attention [3] introduces sparse factorizations on the attention matrix. To implement
this we introduce a connectivity pattern S = {S1, . . . , Sn}. Here, Si denotes the set of
indices of the input vectors to which the ith output vector attends. For instance, in regular
n2 attention every input vector attends to every output vector before it in the sequence.
Remember that dk is the inner dimension of our queries and keys. Sparse Attention is given
as follows

attention(Q,K, V, Si) = softmax
((QSi

)KT
Si√

dk

)
VSi

. (22)

Here, we have defined

QSi
=
(
Wqx⃗j

)
j∈Si

, KSi
=
(
Wkx⃗j

)
j∈Si

, VSi
=
(
Wvx⃗j

)
j∈Si

. (23)

So how do we define the set of connectivity patterns S? Formally, we let Si = Ah
i for

head h where Ah
i ⊂ {j : j ≤ i}. It is still no clearer how we pick which indices we should

take for a given Si. The original authors consider two key criteria initially:

1. We should pick |Ah
i | ∝ n1/H where H is our total number of heads. This choice is

efficient as it ensures the size of the connectivity set scales well with H.

2. All input positions are connected to output positions across p steps of attention. For
instance, for a pair j ≤ i we would like i to be able to attend to j through a path of
locations with maximum length p+ 1. This helps us propagate signals from input to
output in a constant number of steps.

We now investigate two different approaches that satisfy this criteria, and allow us to im-
plement sparse attention.

Strided Attention. We will define a factorized attention pattern in two heads. One
head will attend to the previous l locations, while the other head will attend to every lth
location. We call l the stride and it is chosen to be close to

√
n.

A
(1)
i = {y, y + 1, . . . , i} for t = max(0, i− l), (24)

A
(2)
i = {j : (i− j) mod l ≡ 0}. (25)

Here, A
(1)
i simply takes the previous l locations. A

(2)
i then takes every lth head from the

first head where i− j was divisible by l without remainder. This is particularly useful where
you can align the structure of your input with the stride. For instance, with a piece of music.
Where our input does not have a well defined structured, we use something different. In

Figure (2), you can see A
(1)
i responsible for the dark blue shading and A

(2)
i responsible for

the light blue.

10

Fixed Attention. Our goal with this approach is to allow specific cells to summarize
the previous locations, and to propagate this information on to future cells.

A
(1)
i =

{
j :

⌊
j

l

⌋
=

⌊
i

l

⌋}
,

A
(2)
i =

{
j : j mod l ∈ {t, t+ 1, . . . , l}

}
, where t = l − c and c is a hyperparameter.

These are best understood visually in my opinion. In Figure (2), A
(1)
i is responsible for

the dark blue shading and A
(2)
i for the light blue shading. If we take stride, l = 128 and

c = 8, then all positions greater than 128 can attend to positions 120 − 128. The authors
find choosing c ∈ {8, 16, 32} worked well. Choice of c controls the number of vertical lines
in Figure 2) (c).

Figure 2: Types of Sparse Attention: visualizing the connectivity matrix.

11

5 Inference

5.1 The KV Cache

The computation of attention is costly. Remember that our decoder works in an auto-
regressive fashion. For our given input “ What is the capital of France ? ”

Prediction 1 = The (26)

Prediction 2 = The capital (27)

... (28)

Prediction p = The capital (. . .) Paris. (29)

To produce prediction 2, we will take the output from prediction 1. At each step, the
model will also see our input sequence. Without any tricks, at every step, we’re going to be
re-computing values that have already been calculated. Our attention matrix used for our
first prediction will have the following structure

What is the capital of France ? The

What

is

the

capital

of

France

?

The

(30)

When we compute the second prediction, the structure of our attention matrix looks very
similar. Notice that the attention matrix after prediction one is actually contained within
this matrix!

What is the capital of France ? The capital

What

is

the

capital

of

France

?

The

capital

(31)

Remember, Q and KT are just defined by our matrix M which contains one row per input
token. Thus, Q and KT are very similar between the first and second predictions - only one
row / column has changed! By caching K for each prediction, we can make the computation
of our attention matrix more efficient and by caching V , we make our attention mechanism
output calculation more efficient.

12

5.2 Flash Attention

The goal of Flash Attention [5] is to compute the attention value with fewer high bandwidth
memory read / writes. The approach has since been refined in Flash Attention 2 [4].

We will split the attention inputs Q,K, V into blocks. Each block will be handled sep-
arately, and attention will therefore be computed with respect to each block. With the
correct scaling, adding the outputs from each block we will give us the same attention value
as we would get by computing everything all together.

Tiling. To compute attention, we multiply Q ×KT , divide by
√
dk and then take the

softmax. Keeping track of the scaling values in softmax is the key to making this technique
work. The softmax for a vector x⃗ ∈ R2n is given by

m(x) := max
i

xi, f(x) := [ex1−m(x), . . . , exb−m(x)], ℓ(x) :=
∑
i

f(x)i, softmax(x) :=
f(x)

ℓ(x)

This looks unfriendly, but is really just the notation for a more numerically stable soft-
max. What does that mean? Well, notice we are just applying regular softmax but
with some shifting of each element of vector x⃗ by max(x) units. We can do this because
softmax(x⃗) = softmax(x⃗− c) for any scalar c.

In this case, we improve numerical stability by ensuring we do not take the exponential
of very large numbers. This can lead to overflow issues. This simply means our number
gets too big to store in the given datatype. By subtracting the largest element, we ensure
the vector x⃗ only has non-positive entries. For example, in floating point 64, the maximum
value we can represent is very large (10308). However

ex > 10308 =⇒ x > ln(10308) =⇒ x > 308× ln(10) =⇒ x > 709 (32)

Therefore, approximately any x larger than 709 will result in overflow issues. For in-
stance, computing exp(709) = 8.22e + 307 but exp(710) = inf in numpy. We certainly do
not want our model to hit any overflow errors.

To compute softmax in blocks, we decompose our vector x⃗ ∈ R2n into two smaller vectors
in Rn.Let’s look at the simple case of decomposing into two vectors. Denote these vectors
x⃗1, x⃗2 each in Rn. Our softmax calculation becomes

m(x) = m([x1 x2]) = max(m(x1),m(x2)),

f(x) = [em(x1)−m(x)f(x1) em(x2)−m(x)f(x2)],

ℓ(x) = ℓ([x1 x2]) = [em(x1)−m(x)ℓ(x1) em(x2)−m(x)ℓ(x2)],

softmax(x) =
f(x)

ℓ(x)
.

Notice that we use m(xi)−m(x) as the normalization factor, as we do not know which
group will contain the maximum value of x⃗. By keeping track of both m(x) and ℓ(x) we
will be able to accurately recombine the softmax outputs for each block, as will know how
to rescale the softmax outputs.

Recomputation. We also do not wish to store all the intermediate values we calculate
for every backward pass. Typically we require the attention matrix, QKT , and the output
after softmax, simply softmax(QKT) in each backward pass. However, by using our blocks
of Q,K, V the whole attention matrix is not required to be loaded in during every backward
pass.

13

References

[1] Joshua Ainslie, James Lee-Thorp, Michiel de Jong, Yury Zemlyanskiy, Federico Lebrón,
and Sumit Sanghai. Gqa: Training generalized multi-query transformer models from
multi-head checkpoints, 2023.

[2] Iz Beltagy, Matthew E. Peters, and Arman Cohan. Longformer: The long-document
transformer, 2020.

[3] Rewon Child, Scott Gray, Alec Radford, and Ilya Sutskever. Generating long sequences
with sparse transformers, 2019.

[4] Tri Dao. Flashattention-2: Faster attention with better parallelism and work partition-
ing, 2023.

[5] Tri Dao, Daniel Y. Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. Flashattention:
Fast and memory-efficient exact attention with io-awareness, 2022.

[6] Noam Shazeer. Fast transformer decoding: One write-head is all you need, 2019.

[7] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N.
Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you need, 2023.

14

	Background and Notation
	Introduction To Self Attention
	Scaled Dot Product Self Attention
	Multi Head Self Attention

	Memory Bandwidth Reduction via Key and Value
	Multi Query Attention
	Grouped Query Attention
	Conversions from Multi Head Attention

	Adaptations to the Attention Matrix
	Sliding Window Attention
	Sparse Attention

	Inference
	The KV Cache
	Flash Attention

